Students’ Reasoning about the Concept of Limit 
In the Context of Reinventing the Formal Definition

Introduction

The concept of limit is fundamental to the study of calculus and to introductory analysis; this has been noted by many researchers (Bezuidenhout, 2001; Cornu, 1991; Dorier, 1995). Cornu (ibid) notes that limit “holds a central position which permeates the whole of mathematical analysis – as a foundation of the theory of approximation, of continuity, and of differential and integral calculus” (p.153). Indeed, limits arise in these and many other mathematical contexts, including the convergence and divergence of infinite sequences and series, applications related to determining measurable quantities of geometric figures, and describing the behavior of real-valued functions.

The formal definition of limit is foundational as students proceed to more formal, rigorous mathematics. The vast majority of topics encountered in an undergraduate analysis course, where students study the theoretical foundations of calculus, are built upon or related to the formal definition of limit. Continuity, derivatives, integrals, and Taylor series approximations are just a few of the topics studied in an analysis course for which limit serves as an indispensable component. Further, the formal definition of limit often serves as a starting point for developing facility with formal proof techniques, making sense of rigorous, formally-quantified mathematical statements, and transitioning to abstract thinking. Tall (1992) notes that the ability to think abstractly is a prerequisite for the transition to advanced mathematical thinking, and Ervynck (1981) cites the definition of limit as an opportunity for students to develop the ability to think abstractly. For all of these reasons, the limit concept holds an important place in pedagogical considerations and as an object of research in mathematics education.
Literature Review

Though there are numerous ways to categorize the existing research on limit, I have chosen to separate the literature into two broad categories – informal and formal limit research. I define informal limit research here as research that does not have, as its focus, the ways in which students reason about the formal definition of limit. By formal limit research, I mean research that is focused on how students reason about or understand the formal definition. The vast majority of existing limit research consists of the former. These studies have focused largely on the fact that informal treatments of limit often result in students developing misconceptions based on their interpretation of colloquial language used in the classroom to describe limits (Ferrini-Mundy & Graham, 1994; Monaghan, 1991; Tall, 1992; Williams, 1991). Other studies have shown that informal methods can also result in an over-reliance on simplistic examples used initially to introduce the concept (Cornu, 1991; Davis & Vinner, 1986; Tall & Vinner, 1981; Tall, ibid). Many of the studies mentioned above emphasize what students do not know about the concept of limit. A much smaller segment of the informal limit research literature attempts to describe what students do understand about limits (Ferrini-Mundy & Graham, 1994; Oehrtman, 2003; Oehrtman, 2004; Williams, 2001). Rather than viewing student thinking as deficient, these researchers describe initial student thinking as entailing natural informal conceptions that might facilitate the development of strong conceptual understanding. For instance, based on analysis of student responses in written work and interviews, Oehrtman (2003) describes students’ intuitive understandings as the metaphors for limit they use to make sense of problematic situations. 
In contrast to informal limit research, far fewer studies have explored how students reason about the formal definition of limit. Those that do, however, suggest that formal treatments of the concept also often prove unsuccessful (Cornu, 1991; Dorier, 1995; Tall, ibid; Tall & Vinner, 1981; Williams, 1991). The formal definition is rich with quantification and notation, and is cognitively sophisticated for first semester calculus students (Cornu, ibid). Dorier (ibid) points out that the formal definition was “conceived for solving more sophisticated problems and for unifying all of them” (p.177). However, at the outset of calculus and introductory analysis, students likely have difficulty understanding the importance of a definition designed to unify problems they have yet to encounter. The message seems clear – the formal definition of limit is difficult for students to understand. What is less apparent from the bulk of the literature, however, is how students might come to reason coherently about this difficult concept. Studies by Cottrill et al. (1996) and Larsen (2001) have attempted to address this question. I discuss these studies below and in the subsequent section, as they have had a profound impact on the development of my own research. 
Cottrill et al. (1996) provide a genetic decomposition of how students might reason about the limit concept. This genetic decomposition describes the process a student might experience as he or she constructs a formal understanding of limit. Their hypothesized framework for how students may come to understand the limit concept is as follows:

1. 
The action of evaluating f at a single point x that is considered to be close to, or even equal to, a.

2. 
The action of evaluating the function f at a few points, each successive point closer to a than was the previous point.

3. 
Construction of a coordinated schema as follows.

(a) Interiorization of the action of Step 2 to construct a domain process in which x      approaches a.
(b)  Construction of a range process in which y approaches L.

(c)
Coordination of (a), (b) via f. That is, the function f is applied to the process of x approaching a to obtain the process of f(x) approaching L.

4. 
Perform actions on the limit concept by talking about, for example, limits of combinations of functions. In this way, the schema of Step 3 is encapsulated to become an object.

5. 
Reconstruct the processes of Step 3(c) in terms of intervals and inequalities. This is done by introducing numerical estimates of the closeness of approach, in symbols, 0 x a| and          | f ( x ) L| .

6. 
Apply a quantification schema to connect the reconstructed process of the previous step to obtain the formal definition of limit.

7. 
A completed ε-δ conception applied to a specific situation.

Cottrill and his colleagues suggest that the concept of limit might eventually be thought of as a schema that is the collection of actions, processes and objects
. Evidence from their study led Cottrill et al. to believe that the construction of a coordinated schema happens in a three-part process, the substeps listed under step three above. The majority of their analysis focused on this third step, as well as the two preceding steps. None of the students’ thinking in the study conducted by Cottrill et al. evolved to the point of having a formal conceptual understanding of limit. Further aspects of this framework will be discussed in the next section.

In summary, the majority of the literature focuses on informal, rather than formal, understanding of the limit concept. While these studies indicate that students have great difficulty reasoning coherently about the formal definition, it remains to be seen how students might successfully come to understand it. Therefore, it is to this area of limit research, in which there is a paucity of studies, that I direct my investigations. 
Origin of Research Questions

I believe the genetic decomposition suggested by Cottrill et al. (1996) serves as a particularly useful starting point for studying students’ formal conceptions of limit. Their research suggests that to develop a formal understanding of limit, one must merely formalize one’s informal notions of the concept. In the decomposition outlined above, doing so amounts to formalizing the first three steps, specifically by reconstructing the coordinated schema described in Step 3c in terms of intervals and inequalities. I argue however, that the formalization process is not so straightforward – formal understanding does require one to think in terms of intervals and inequalities, but the transition to formal thinking is not merely a reconstruction of what is described in the first three stages of the genetic decomposition. Research by Larsen (2001) substantiates this perspective. Most students in Larsen’s study did not make connections between their formal understandings and the rest of their concept image (Vinner, 1991), which was comprised mostly of informal conceptions described in the first three steps of the genetic decomposition. Larsen suggests that “the formal definition is structurally different from the dynamic conception as described by the first four steps of the genetic decomposition,” thus making it “unlikely that a student could successfully interpret the syntax in terms of their dynamic conception” (p.29). In light of Larsen’s findings, I recommend that a clearer distinction be made between informal and formal understanding of limit. In informal understanding, the goal is generally to find a candidate for the limit. Formal understanding, on the other hand, typically addresses how one might validate the choice of a candidate. Finding and validating are two different processes
. In calculus courses, students are taught a variety of strategies for finding candidates for limits – direct substitution, algebraic manipulation, and tabular and graphical inspection. However, none of these satisfy the formal definition’s requirement of validation. Cottrill et al. (1996) provide evidence that when students select a candidate for the limit of a function, they do so in a forward manner. By forward, it is meant that students focus their attention first on inputs (x’s), and then on corresponding outputs (y’s). The selection of a candidate is made based on what numeric value the y’s are getting close to as x’s get closer to a. 
It is worth noting, then, that the validation of a limit requires that one begin with a given candidate. The key to validating a candidate, however, is the ability to reverse one’s thinking (i.e., think in a backwards manner). Instead of going from x’s to y’s, a student must first consider what is taking place along the y-axis. 
In order to understand the definition of a limit, a student must coordinate an entire interval of output values, imagine reversing the function process and determine the corresponding region of input values. The action of a function on these values must be considered simultaneously since another process (one of reducing the size of the neighborhood in the range) must be applied while coordinating the results (Carlson, Oehrtman, & Thompson, 2007, p.160). 
Thus, the process of validating a candidate requires a student to recognize that his/her customary ritual of first considering input values is no longer appropriate. Instead the student must consider first a range of output values around the candidate, project back to the x-axis, and subsequently determine an interval around the limit value that will produce outputs within the pre-selected y-interval. Larsen’s research (2001) suggests that the intricacies involved in this backwards process are arguably far more complex for students than merely formalizing a forwards process, as Cottrill et al. (1996) conjectured. The very complex nature of the formal definition makes it highly unlikely that a student with a strong forwards view of functions would be able to conceive of a new concept in such a backwards way, particularly when the focus during a first term calculus course is on finding limits, not validating them. 
In summary, I view the genetic decomposition offered by Cottrill et al. (1996) as a helpful framework from which to develop my own research. Specifically, their work provides evidence of how students reason about the informal/forwards process of finding limits (Steps 1-3 of their genetic decomposition); however, due to the complexity of the concept, there is a dearth of data describing how students reason about the formal/backwards process of validating limits. Thus, it seems that more research is needed to elucidate the latter stages of their genetic decomposition. The overarching purpose of the research reported here is to generate such insights and to move toward the elaboration of a cognitive model of what might be entailed in coming to understand this formal definition. Specifically, the intent of my research is:
1. To develop insight into students’ reasoning in relation to their engagement in tasks designed to support their reinventing the formal definition of limit, and;

2. To inform the design of principled instruction that might support students’ attempts to reinvent the formal definition of limit.
The first objective above is set against the broader background goal of contributing to an epistemological analysis (Thompson & Saldanha, 2000) of the concept of limit of a real-valued function and its formal definition. Also, while other studies (e.g., Larsen, 2001; Fernandez, 2004) have sought to describe how students interpret the formal definition, my research seeks to address this need by focusing on how students reason about the formal definition of limit in the context of reinvention. I contend that interpreting the definition could result in a very different type of reasoning than the reasoning that might arise while attempting to reinvent the definition. Hence, the use of an instructional trajectory designed to support students in reinventing the formal definition of limit may provide a way to generate insights into students’ thinking that would not be available through interpretation tasks. Indeed, the formal definition of limit constructed by Cauchy, and subsequently by Weierstrass, was motivated by a need to specify the local behavior of functions in a precise manner. Neither mathematician’s respective definition was a reformulation or interpretation of the traditional formal definition – on the contrary, these mathematicians constructed their definitions in response to an inherent need to classify functional behavior. I feel, then, that I might learn a great deal about how students reason about the formal definition of limit if I engage them in activities designed to foster their reinvention of the formal definition of limit. Such an instructional trajectory would include tasks designed to raise issues analogous to those that motivated the invention of the Cauchy-Weierstrass definition of limit.
Theoretical Perspectives
Ernst von Glasersfeld (1995), drawing on Piaget’s genetic epistemology (1971, 1977), developed a psychological theory of knowing which is known as radical constructivism (RC). Two central tenets of RC are:
1.
Knowledge is not passively received either through the senses or by way of communication, but is actively built up by the cognizing subject.

2. 
The function of cognition is adaptive, in the biological sense of the term, tending towards fit or viability and serves the subject’s organization of the experiential world, not the discovery of an objective ontological reality (von Glasersfeld, 1995, p.51).

In my study, I drew upon RC in two important ways. First, RC served as a guiding framework methodologically, both in regards to the dynamic I intended to create between participants and in regards to how I selected participants. For example, the instructional sequence was designed to create a dynamic in which students might experience frequent perturbations, thus providing them with opportunities to make cognitive accommodations. In this way, the students were motivated to organize their experiential world and thus actively build up knowledge. Second, RC served as a lens through which I analyzed the data generated in the study. For example, in my analyses of the data, I paid particular attention to students’ personal interpretations of the tasks, looking for evidence of how they compared with those targeted in instruction. In so doing, I was able to make subsequent revisions for future iterations of the research cycle, and cast my research findings as inferences about student reasoning given particular interpretations of instructional tasks. Given RC’s perspective on ontological reality, I believe the intention of data analysis is not to generate statements of fact about how students reason about or understand limits, but rather to generate viable interpretations of students’ reasoning and understanding.

In addition to the overarching perspective of radical constructivism, I briefly describe aspects drawn from the perspective of developmental research that guided the instructional design for my study. The goal of developmental research is to “design instructional activities that (a) link up with the informal situated knowledge of the students, and (b) enable them to develop more sophisticated, abstract, formal knowledge, while (c) complying with the basic principle of intellectual autonomy” (Gravemeijer, 1998, p.279). Developmental research in education typically unfolds in cycles that are driven by two reflexively related phases – a developmental phase and a research phase. The former is characterized by the development of instructional activities designed to assist students in progressing toward previously identified understandings related to a particular mathematical concept. The instructional activities are developed based on a local instructional theory. The latter research phase is characterized by analysis of student activity and reasoning as they engage in the instructional activities. This analysis, in turn, then serves as a guide in further developing the local instructional theory and in refining the instructional activities to be implemented in subsequent research cycles.

A heuristic commonly associated with developmental research is guided reinvention.

This well-established heuristic has been employed in numerous content areas of postsecondary mathematics education (see Larsen, 2004; Marrongelle & Rasmussen, 2006). Guided reinvention is described by Gravemeijer et al. (2000) as “a process by which students formalize their informal understandings and intuitions” (p.237). An important aspect of this process is the identification of plausible instructional starting points from which students might naturally formalize their informal understandings. 
In sum, my intention was to model students’ reasoning in relation to their engagement in instruction designed to guide them in reinventing the formal definition of limit. My research objective was in line with the goal of developmental research – to design instructional activities that allow students to autonomously build upon their informal knowledge as they develop more sophisticated, abstract, formal knowledge. The guided reinvention principle oriented my selection of starting points for instruction – students’ informal interpretations of the concept guided the development of instructional tasks.
Method

The study was conducted over the course of seven months (May-December) during 2007, with four students (one female and three males) from a large urban university. Participants for the study were selected based on the following criteria: 1) strong informal understanding of limit; 2) no prior experience with the formal definition of limit, be it in high school or other calculus courses taken at the university level; and, 3) demonstrated ability to communicate their reasoning freely and without hesitation. All four participants had been students in both my Calculus I course during the Fall of 2006 and Calculus III course during the Spring of 2007, and three of the four participants had been students in my Calculus II course during the Winter of 2007. Thus, through my interactions with these students over the course of the academic year, I had ample data on which to base my selection of these participants. 
The focus of my research is on modeling student thinking, along the lines articulated by proponents of the teaching experiment methodology (Steffe & Thompson, 2000). The researcher’s central purpose in a teaching experiment is to construct a model of student thinking or reasoning in relation to a particular concept or idea. In this way, the teaching experiment methodology is an appropriate framework for my research. The study consisted of two separate teaching experiments – one for each pair of students. Each teaching experiment included ten sessions, or teaching episodes, with approximately one session per week. These sessions were videotaped and each lasted approximately 60 to 100 minutes. The first teaching experiment was conducted from late May until early August and was followed by an analysis of the data generated in the first teaching experiment. I made subsequent revisions to the instructional trajectory prior to conducting the second teaching experiment, which took place from late September until early December. Each session proceeded in a similar format – the students responded to written and verbal tasks I presented, taking on the roles of both conjecturer and refuter
. 
The first teaching experiment will be the primary focus of my discussion in subsequent sections of this report. Following some initial attempts at defining limit at a point, I asked the first pair of students to define limit at infinity. My decision to have them first pin down a precise definition of limit at infinity was based on the conjecture that the formal definition of limit at infinity is cognitively less complex than the formal definition of limit at a point.  This is due to the fact that in the case of limit at infinity, one is only required to describe closeness along the y-axis, whereas in the case of limit at a point, one must describe closeness along both axes. I anticipated that this sequence would provide a natural progression allowing students to use their definition of limit at infinity in reinventing the definition of limit at a point.  Thus, based upon this conjecture, the following tasks, listed in sequential order, formed the structure of the first teaching experiment
:
· Attempts to motivate the need for a rigorous definition of limit at a point
· Generation of examples and counterexamples of limit at a point
· Initial attempts to precisely define limit at a point
· Generation of examples and counterexamples of limit at infinity
· Reinvention of the definition of limit at infinity through a process of refinement

· Reinvention of the definition of limit at a point using the definition of limit at infinity as a foundation and motivation for continued refinement
The central task for each teaching experiment was for the students to generate a precise definition of limit at a point. The students’ generation of examples and counterexamples of limit served as a starting point from which to proceed in reinventing the formal definition. The students used these examples and counterexamples as a source of motivation for refining their definition throughout the respective teaching experiments. 
Data Analysis

The analysis of data occurred at a variety of levels. In the midst of each teaching experiment, I conducted an ongoing analysis between each session, which informed my decisions about subsequent sessions within the same teaching experiment. Ongoing analysis consisted of: 1) transcribing each session; 2) constructing a content log, which contained descriptive notes characterizing what I was asking the students to do, inferences about the students’ interpretations of what I was asking them to do, and conjectured potential conceptual entailments of students’ reasoning about limit in the context of reinvention; and, 3) composing an 8-10 page document outlining my instructional goals and conjectured tasks for the upcoming session, as well as my rationale for those tasks. Following each teaching experiment, I conducted a post analysis of the data generated by each pair of students. This provided me an opportunity to analyze each set of data more deeply, so as to begin to develop themes present throughout the data set. Post analysis consisted of reviewing the videos and transcriptions of all ten sessions, highlighting noteworthy excerpts, and making conjectures about thematic elements of student reasoning. Finally, following both teaching experiments, I conducted a retrospective analysis, wherein I was able to analyze the entire corpus of data at a deeper level than the preceding analyses. Retrospective analysis consisted of reviewing the post analyses of both teaching experiments, comparing and contrasting student reasoning between the four students. This process led to a refinement of my description of thematic elements present in student reasoning. At all three levels of analysis, I was frequently engaged in discussion with other mathematics educators who had intimate knowledge of the study in an effort to reach consensus about the data.

Discussion/Results
I will focus the discussion below primarily on results stemming from analysis of the first teaching experiment. Analysis of the data generated in the first teaching experiment points to four central and related findings: 1) y-first thinking is counterintuitive to students because their mathematical experiences to date are dominated by x-first thinking; 2) reinventing the definition of limit at infinity can support the process of reinventing the definition of limit at a point; 3) successful reinvention of the formal definition of limit requires one to recognize that the formal definition is not a means by which one would find a candidate for a limit; and, 4) students may stand a better chance of understanding the conventional ε-δ definition of limit once they have first constructed their own definition. I will discuss each of these below.
“y-first” Thinking is Counterintuitive

Data generated during both teaching experiments supports Larsen’s (2001) conjectures regarding the type of thinking that is necessary to reason coherently about the formal definition of limit. Indeed, the first pair of students, John and Elise
, voiced reluctance to reasoning in the backwards manner necessary for validating limits and showed a strong preference for y-first thinking. In the excerpt below, John and Elise discuss the order in which λ and θ
 should be presented in their reinvented definition of limit at a point. 
John:
Correct me if I’m wrong, but didn’t our λ give us our θ?

Elise:
[F]rankly I find it kind of counterintuitive to 
come at it from the λ perspective because we don’t usually think about functions…as being defined in terms of an x coming from a certain y. We usually think about it in the other direction, where we plug in a given x…, where x is the given and y is the dependent variable, you know?

Elise’s comments here suggest that students’ prior mathematical experiences do not lend themselves to thinking about functions from a y-first perspective. John and Elise’s preference for x-first thinking was evident in their initial attempts to precisely define limit at a point. 
During the fourth session, John and Elise made their first attempt at precisely defining limit at a point in response to the question, “What would have to be true for the function to have a limit of 2 as x(5?”  After some work, John and Elise provided the following x-first-driven definition: “As x-values get closer to 5, y-values get closer to 2.” This x-first perspective was so strong that two sessions later, even after much discussion and refinement, they continued to define limit in an x-first fashion: 
“The limit L of a function at x=a exists if every time we look at the function more closely as we get infinitely close to x=a, it bears out the same pattern of behavior, i.e., looks to be approaching some y-value L w/no vertical gaps in the graph.” 
One of my central instructional goals during the teaching experiment was to lead the students to a state of cognitive conflict, in which they would see the need to consider the y-axis first. Accomplishing this goal, however, was extremely difficult because the students, to date, had experienced ongoing mathematical success by thinking about functions, and limits, from an x-first perspective (not only in the teaching experiment, but in their mathematical careers as well). Indeed, one of the students from the second teaching experiment, Brian, summarized exactly how engrained x-first thinking can be for students. 
Craig: 
Are you saying that’s odd to you to have the y-axis be the independent variable? And if so, why is that odd to you?

Brian: 
Uh, just because of all the years of math training….And on an x-y graph you’re saying, well what’s going on here? You’ve got a curve, you say, oh, well this is what’s going on. What you don’t do is go, uh, pick a y-value and see what corresponding x-value comes from it….[A]nd just to be clear about it,…I’m not saying there’s a problem with doing that. Just that it is foreign, uncomfortable, and I’m not sure if it’s going to be in the realm of mathematical allowance.

Brian’s comments suggest that students may view mathematics as a discipline governed by rules and axioms which are external to the student and learned via experience. Given that students’ experience with functions prior to Calculus is primarily x-first, it is not surprising that the formal definition of limit would appear “foreign” or “uncomfortable.” 
Limit at Infinity supports Limit at a Point
In response to John and Elise’s tendency to reason about limits from an x-first perspective, I shifted the focus of their discussions at the outset of the seventh session to defining limit at infinity. In the case of limit at infinity, there is no finite x-value to “get close to,” as one is only required to describe closeness along the y-axis, whereas in the case of limit at a point, one must describe closeness along both axes. I anticipated that the absence of a particular x-value on which to zoom in the case of limit at infinity might make John and Elise more likely to focus their discussion on bounding the y-axis, as the conventional ε-N picture below illustrates.
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Further, because of the structural similarities between the definitions of limit at infinity and limit at a point, I thought this sequence would provide a natural progression for them to use their definition of limit at infinity in reinventing the definition of limit at a point. This instructional decision paid dividends. After generating examples and counterexamples of limits at infinity, John and Elise reinvented the definition of limit at infinity via an iterative process of proposing, analyzing, and refining their definition. By the end of the eighth session they were able to provide a “final” definition of limit at infinity synonymous to the conventional definition: “Lim f(x)=L as x(∞ provided for any arbitrarily small positive number λ, by taking sufficiently large values of x, we can find an interval (a,∞) such that for all x in (a,∞) |L-f(x)|≤ λ.” During the final two sessions, John and Elise made use of their definition of limit at infinity to refine their initial attempts to define limit at a point, as the excerpt below illustrates. 
Elise: 
I wonder if it would be useful to invoke some of the same language that we used in…that definition.

John: 
So basically we’re doing the same thing. We’re making that interval on the x-axis instead of the y-axis….I feel like this…is the same thing we had for our other interval for limits at infinity, so I feel like…we can just switch some things or change some things because our interval is now to a specific point. 
Using their definition of limit at infinity as a template, and making necessary alterations to account for the finite context, John and Elise successfully constructed a definition of limit at a point synonymous to the conventional definition. By the end of the tenth and final session, John and Elise provided the following definition: “lim f(x) = L as x(a provided that: given any arbitrarily small # λ, we can find an (a±θ) such that |L-f(x)| ≤ λ for all x in that interval except possibly x=a.” This was a significant achievement given the complexity of the formal definition, and suggests that the act of first defining limit at infinity may not only assist students in making a shift to a y-first perspective, but may also provide a useful template for reinventing the definition of limit at a point. 
Finding vs. Validating

A third, related finding from the first teaching experiment is that successful reinvention of the formal definition of limit is supported by one’s recognition that the formal definition is not a means by which one would find a candidate for a limit. This recognition by John and Elise was a significant moment in their attempt to reinvent the formal definition of limit. Prior to this recognition, John and Elise had confounded the process of defining limit with the process of finding limits, a confusion that stunted the progress of their definition considerably. However, in the process of refining their definition, Elise became aware that the very nature of their definition presupposed the existence of a proposed candidate L, as the excerpt below indicates. 

Elise:
This [definition] isn’t going to do us a lot of good in terms of finding L in the first place. But once, through some other means, we found it, you know, then we can use this as a test.

Elise’s comments suggest that she had made a distinction between the process of finding limits and the process of validating limits, a distinction Larsen (2001) has noted as imperative. The chronological structure of Elise’s statements indicates that she imagines the definition of limit as being dependent upon the initial act of finding a reasonable candidate. Her use of the word “test” implies that the definition is used to validate such a candidate. As the conversation with John progressed, Elise remained adamant that the definition they were constructing was designed to validate a pre-existing candidate L. 
Elise:
And I mean, ‘cause this whole thing presupposes that we already have a pretty damn good guess about what L is! We already think we know, you know? I mean we do know. We know we have the right one. We just, umm, you know, we’re trying to prove it. 

Elise’s view of the definition as something that would be used to prove the existence of a limit provided a perspective conducive to making important progress towards a reinvented definition logically equivalent to the conventional ε-δ definition. 
Interpreting the Conventional ε-δ Definition of Limit
The reader will recall that while some existing studies (e.g., Larsen, 2001; Fernandez, 2004) have sought to describe how students interpret the formal definition of limit, my research seeks to contribute to an epistemological analysis (Thompson & Saldanha, 2000) of the concept of limit of a real-valued function and its formal definition by focusing on how students reason about the formal definition in the context of reinvention. Although my focus was not on students’ interpretations of the formal definition, a fourth and important finding in this study was that students may have the ability to coherently interpret the conventional ε-δ definition of limit once they had first reinvented their own definition. As mentioned previously, by the end of the teaching experiment, John and Elise had constructed a definition of limit at a point which was synonymous to the conventional ε-δ definition. This, in itself, was a significant achievement, given that neither student had previously seen, nor was aware of, the conventional ε-δ definition of limit. What is also significant, however, was that John and Elise were able to reason coherently about the conventional ε-δ definition as a result of their experience reinventing their own definition. During the last session, I showed John and Elise the conventional ε-δ definition and asked them if they felt it captured the intended meaning of their own definition. I did not tell John and Elise that the definition I shared with them was the conventional definition accepted by the mathematics community, but rather that it was an articulation two other people came up with when constructing the definition of limit. In response to the conventional definition, John and Elise demonstrated the ability to reason coherently about, and interpret, the ε-δ definition in light of their own definition, as the excerpt below illustrates.

Craig: 
Does it capture…the intended meaning of your guys’ articulation?

Elise: 
Yeah. Yeah.

Craig: 
Okay, why else do you like that one?

Elise: 
Well, ‘cause it just seems like a concise way of saying…the same thing that I thought we were trying to get at, you know? That no matter how closely you squeeze in around your proposed limit you will find an interval around x…that corresponds to y-values for which that’s true.

Craig:
Okay. Umm, now I noticed in your guys’ articulation you have this piece about umm, except possibly x=a….Is that piece included in the second articulation? Or does that second articulation fail to capture that idea?

Elise: 
Well, I think that it actually captures it nicely ‘cause it says that x-a is greater than 0, so that precludes the possibility of x equaling a. So we don’t have to worry about it. 
Elise’s comments above suggest that the definition she and John constructed served as a basis from which she was able to interpret the ε-δ definition. It is telling that she was even able to note how some subtleties of their definition were captured by the ε-δ definition.
Conclusions 
The vast majority of topics encountered in an undergraduate analysis course, including continuity, derivatives, integrals, and Taylor series approximations, are built upon the formal definition of limit. Hence, coherent reasoning about the formal definition of limit stands to benefit students as they make the transition from Calculus to more formal, rigorous mathematics. Other research, to date, has provided little insight into what is entailed in coming to understand the formal definition of limit. The research reported here suggests that students have the potential to develop coherent understanding of the formal definition of limit when they are provided an opportunity to build upon their informal understandings. Further, reinventing the definition of limit at infinity provided substantive cognitive support for reinventing the definition of limit at a point. Through this process of reinvention, students wrestled with, and overcame, cognitive hurdles associated with the formal definition. Two such hurdles were: 1) accepting the counterintuitive y-first line of thinking necessary for making sense of the formal definition; and, 2) recognizing the distinction between finding limits and validating limits. The findings reported here, as well as other thematic elements that emerged during the two teaching experiments, stand to potentially elucidate the latter steps of the genetic decomposition proposed by Cottrill et al. (1996).
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� This theoretical perspective is commonly referred to as APOS theory (action-process-object-schema). For a detailed description, see Dubinsky (1992). 





�Fernandez (2004) and Juter (2006) have also suggested that validating limits involves a process distinct from the process of finding limits. Their perspectives, in addition to Larsen’s perspective discussed here, have assisted me in articulating my own thinking on the distinction between these two processes. 


� At the outset of each teaching experiment, I encouraged the respective pair of students each to take on both of these roles at various times for the duration of the teaching experiment. I told them that the role of conjecturer entailed proposing thoughts and ideas they were having, even if those thoughts and ideas were not fully formulated. I told them the role of refuter meant taking on a contrarian role wherever warranted, seeking logical inconsistencies in each other’s ideas, so that ideas might be refined.


� The second teaching experiment had a similar structure to the first teaching experiment, with a notable exception being that the limit at infinity tasks were removed so as to assess whether reinvention of the definition of limit at a point is possible without first reinventing the definition of limit at infinity. 


� To provide anonymity, all student names presented in this report are pseudonyms. 


� John and Elise used λ in place of the conventionally-used ε, and θ in place of the conventionally-used δ.
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